m at h . A P ] 2 6 O ct 2 00 8 LOW REGULARITY FOR A QUADRATIC SCHRÖDINGER EQUATION ON T by Laurent Thomann

نویسندگان

  • Laurent Thomann
  • LAURENT THOMANN
چکیده

— In this paper we consider a Schrödinger equation on the circle with a quadratic nonlinearity. Thanks to an explicit computation of the first Picard iterate, we give a precision on the dynamic of the solution, whose existence was proved by C. E. Kenig, G. Ponce and L. Vega [15]. We also show that the equation is well-posed in a space H(T) which contains the Sobolev space H(T) when p ≥ 2. Résumé. — Dans cet article on s’intéresse à une équation de Schrödinger sur le cercle avec une non-linéarité quadratique. Un calcul explicite de la première itérée de Picard permet de donner une précision sur la dynamique de la solution, dont l’existence a été démontrée par C. E. Kenig, G. Ponce et L. Vega [15]. On montre également que l’équation est bien posée dans un espace H(T) qui contient l’espace de Sobolev H(T) lorsque p ≥ 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 70 7 . 17 85 v 1 [ m at h . A P ] 1 2 Ju l 2 00 7 INSTABILITIES FOR SUPERCRITICAL SCHRÖDINGER EQUATIONS IN ANALYTIC MANIFOLDS by

— In this paper we consider supercritical nonlinear Schrödinger equations in an analytic Riemannian manifold (M, g), where the metric g is analytic. Using an analytic WKB method, we are able to construct an Ansatz for the semiclassical equation for times independent of the small parameter. These approximate solutions will help to show two different types of instabilities. The first is in the en...

متن کامل

ar X iv : m at h / 06 09 80 7 v 3 [ m at h . A P ] 1 9 D ec 2 00 6 GEOMETRIC AND PROJECTIVE INSTABILITY FOR THE GROSS - PITAEVSKI EQUATION

— Using variational methods, we construct approximate solutions for the Gross-Pitaevski equation which concentrate on circles in R. These solutions will help to show that the L flow is unstable for the usual topology and for the projective distance.

متن کامل

Probabilistic global well-posedness for the supercritical nonlinear harmonic oscillator

— Thanks to an approach inspired from Burq-Lebeau [6], we prove stochastic versions of Strichartz estimates for Schrödinger with harmonic potential. As a consequence, we show that the nonlinear Schrödinger equation with quadratic potential and any polynomial nonlinearity is almost surely locally well-posed in L(R) for any d ≥ 2. Then, we show that we can combine this result with the high-low fr...

متن کامل

Dynamics on resonant clusters for the quintic non linear Schrödinger equation

— We construct solutions to the quintic nonlinear Schrödinger equation on the circle i∂tu+ ∂ 2 xu = ν |u| 4 u, ν ≪ 1, x ∈ S, t ∈ R, with initial conditions supported on arbitrarily many different resonant clusters. This is a sequel the work [5] of Benôıt Grébert and the second author.

متن کامل

ua nt - p h / 03 09 21 3 v 2 9 O ct 2 00 3 Symmetrized Schrödinger Equation and General Complex Solution ∗

We suggest the symmetrized Schrödinger equation and propose a general complex solution which is characterized by the imaginary units i and ǫ. This symmetrized Schrödinger equation appears some interesting features.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008